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Collective field description of spin Calogero–Sutherland
models
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Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa, Kyoto 606-01, Japan

Received 18 December 1995, in final form 19 February 1996

Abstract. Using the collective field technique, we give the description of the spin Calogero–
Sutherland model (CSM) in terms of free bosons. This approach can be applicable for arbitrary
coupling constant and provides the bosonized Hamiltonian of the spinCSM. The boson Fock space
can be identified with the Hilbert space of the spinCSM in the large-N limit. We show that the
eigenstates corresponding to the Young diagram with a single row or column are represented by
the vertex operators. We also derive a dual description of the Hamiltonian and comment on the
construction of the general eigenstates.

1. Introduction

The Calogero–Sutherland model (CSM) [1, 2] has been an interesting laboratory to study the
fractional statistics in(1+1) dimensions [3–5]. Its paradigmatic role as the anyonic analogue
of the free boson or fermion gas has been established. Also, theCSM is related to various
branches of physics and contains many interesting aspects in mathematical physics [6].
In particular, it is known that this model is the universal Hamiltonian for the disordered
systems [7].

Many variants of theCSM now exist, for example, its lattice cousin, the so-called
Haldane–Shastry model [8], and multicomponent version, thespin (or dynamical)CSM

[9–12]. A lot of intriguing results have been obtained in connection with these models
where the Yangian symmetry [13–16] plays an essential role in explaining the degeneracy
of the spectrum. For particular couplings,α = 2, 1

2, this nonlinear symmetry is known to
be realized through the spinon basis (or the vertex operators of the free boson) [17–19].
This is the point where the symmetry of the system is enhanced to the level onesu(2)
Kac–Moody algebra.

In our previous studies [20], the bosonization for theCSM has been given (see the
related works [21–24]). One of the essential observations in these works was that the
collective coordinate description of the system is equivalent to the Coulomb gas description
of the minimal model of conformal field theory. In particular, two screening currents of the
minimal model are naturally identified with the generating functionals of one-particle and
one-hole states. Similarly, any eigenstate (which is known as the Jack polynomial) can be
identified with the singular vector of the appropriateW algebra.
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In this paper, we show that some part of the above scenario can be generalized to the
spin CSM without any restriction on the coupling constant. We describe the Hamiltonian
in terms of multicomponent free bosons. In our method, the correspondence between the
spin-CSM Hilbert space and the free-boson Fock space is one to one. We obtain explicitly
the generating functional of one-particle (hole) excited states as a vertex operator. General
eigenstates would be written as the product of the vertex operators. We also derive the
‘dual’ Hamiltonian defined by the action of the original Hamiltonian on such states. The
integrability of this dual Hamiltonian directly follows from its construction.

There are, however, some differences from the spinlessCSM. For example, the duality
(or the charge conjugation) symmetry of the system disappears. Therefore, it becomes rather
difficult to relate the Hamiltonian with the loop algebra such as the Virasoro algebra or the
Kac–Moody algebra. In particular, it is still hard to see the connection with the Yangian or
the Kac–Moody symmetry even if we pickα = 2 or 1

2.
In the final section, we comment on how one can construct the general eigenstates of

the spinCSM by using the dual Hamiltonian.

2. Collective field description of spinCSM

Let us write down the reduced form of the Hamiltonian for the spinCSM (see [10, 14]).
Performing a ‘gauge’ transformation, the Hamiltonian is given by

H = α

N∑
i=1

D2
xi

+
∑
i<j

xi + xj

xi − xj
(Dxi −Dxj )− 2

∑
i<j

xixj

(xi − xj )2
(1 −Kij ) (1)

whereα ∈ C is the coupling constant,Dx ≡ x ∂
∂x

andKij is the (coordinate) exchange
operator, namely, for a functionf in xi ’s,

Kijf (. . . , xi, . . . , xj , . . .) ≡ f (. . . , xj , . . . , xi, . . .) .

The wavefunction of the Hamiltonian is described by the coordinatesxi and the spin
variablesσi attached to them. Each spin variable takes values in the set{1, 2, . . . , s}
(i.e. we consider thes-component system) and the wavefunction should be invariant under
the simultaneous exchange of both variables,

ψ(. . . , xiσi, . . . , xjσj , . . .) = ψ(. . . , xjσj . . . , xiσi, . . .) . (2)

In other words, the exchange of the coordinate and that of the spin variable have the same
effect when they are acted on the wavefunction.

One of the non-trivial properties of the spin-CSM Hamiltonian is that, when we try to
diagonalize the Hamiltonian, we are able to restrict the Hilbert space such that the spin
variable for each particle is fixed. More precisely, let us denotex

(σ)
i ’s as those coordinates

whose spin variables take a valueσ ∈ {1, . . . , s}. Then the restricted Hilbert space is
defined by the set of functions which are symmetric under the exchangex

(σ)
i andx(σ)j for

each spinσ . At first glance such restriction may not be compatible with the action of the
Hamiltonian because of the terms which include the exchange operatorKij . These terms
exchange thex coordinates alone and leave the spin variables untouched. However, we can
prove by an explicit computation that the undesirable terms vanish.

In the restricted Hilbert space, we can apply the standard bosonization (or collective
coordinates) technique. Let us define the power sum for each spin,

p(σ)n ≡
N(σ)∑
i=1

(x
(σ)
i )n (3)
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whereN(σ) is the number of particles with spinσ . We also introduce free bosonsa(σ)n ,
n ∈ Z, and boson fieldsφ(σ)± (ξ), (σ = 1, . . . , s), such that

[a(σ)n , a(σ
′)

m ] = nδσ,σ
′
δn+m,0 φ

(σ)
± (ξ) = ∓

∑
n>0

1

n
a
(σ)
±n ξ

∓n . (4)

The bosonization method is to replacep(σ)n by the free-boson creation operatora(σ)−n .
The collective coordinate description becomes exact in the limit that the number of the
particles, i.e.N(σ)’s become all infinite. The replacementp(σ)n ↔ a

(σ)
−n can be carried out

systematically by introducing the operator〈V|,

〈V| ≡ 〈N | exp

{∑
σ

∑
n>0

1

n
p(σ)n a(σ)n

}
(5)

with the lowest weight state〈N | such that〈N |a(σ)−n = 0, n > 0 and 〈N |a(σ)0 = N(σ)〈N |.
Taking the inner product with this bra state, we can translate the Fock space of free bosons
into the restricted Hilbert space of the spinCSM. Namely,〈V| translates coordinatesx(σ) to
bosonsa(σ)n as follows:

p(σ)n 〈V| = 〈V|a(σ)−n n
∂

∂p
(σ)
n

〈V| = 〈V|a(σ)n . (6)

In the limit N(σ) → ∞, this correspondence is one to one. In other words, any operator
which acts on the restricted Hilbert space can be rewritten by free-boson oscillators. In
particular, the Hamiltonian is bosonized as follows. Firstly, we shall decompose the
Hamiltonian (1) into two parts,

H(x) =
s∑

σ=1

H(σ )(x(σ))+
∑
σ<σ ′

H(σσ ′)
int (x(σ), x(σ

′)) (7)

with

H(σ ) = α

N(σ)∑
i=1

(
D
x
(σ)
i

)2
+

∑
i<j

x
(σ)
i + x

(σ)
j

x
(σ)
i − x

(σ)
j

(D
x
(σ)
i

−D
x
(σ)
j
) (8)

H(σσ ′)
int =

∑
i,j

x
(σ)
i + x

(σ ′)
j

x
(σ)
i − x

(σ ′)
j

(D
x
(σ)
i

−D
x
(σ ′)
j

)− 2
∑
i,j

x
(σ)
i x

(σ ′)
j

(x
(σ)
i − x

(σ ′)
j )2

(1 −K
x
(σ)
i ,x

(σ ′)
j

) . (9)

Then, the bosonized Hamiltonian̂H = ∑
σ Ĥ(σ ) + ∑

σ<σ ′ Ĥ(σσ ′)
int , whereH〈V| = 〈V|Ĥ, is

given by the formulae

Ĥ(σ ) =
∑
n,m>0

(
a
(σ)
−n a

(σ)
−ma

(σ)
n+m + αa

(σ)
−n−ma

(σ)
n a(σ)m

) +
∑
n>0

(
αn− n+ a

(σ)

0

)
a
(σ)
−n a

(σ)
n (10)

Ĥ(σσ ′)
int =

∑
n,m>0

a
(σ)
−n a

(σ ′)
−m

(
a
(σ)
n+m + a

(σ ′)
n+m

) +
∑
n>0

(
a
(σ ′)
0 a

(σ)
−n a

(σ ′)
n + a

(σ)

0 a
(σ ′)
−n a

(σ)
n

)
+

∮
dξ

ξ

dη

η

∑
n,m>0

ξnηma
(σ)
−n a

(σ ′)
−m e

∑
n>0

1
n
(ξ−n−η−n)(a(σ

′)
n −a(σ)n )

∑
k>0

k

(
ξk

ηk
+ ηk

ξk

)
.

(11)

Here
∮

dx
x
f (x) stands for the constant term off (x). The proof is similar to that in our

previous papers [20]. The essential point is thatH(σσ ′)
int 〈V| has no pole atx(σ)i = x

(σ ′)
j and is
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a power series inx(σ)i andx(σ
′)

j ’s. To treat the parts which include the exchange operators,
we used

K
x
(σ)
i x

(σ ′)
j

〈V| = 〈V| e
∑

n>0
1
n
((x

(σ)
i )n−(x(σ ′)

j )n)(a
(σ ′)
n −a(σ)n )

= 〈V|
∮

dξ

ξ

dη

η

∑
n,m>0

ξnηm(x
(σ)
i )n(x

(σ ′)
j )m e

∑
n>0

1
n
(ξ−n−η−n)(a(σ

′)
n −a(σ)n ) . (12)

In the appendix, we will give examples of the eigenstates of this bosonized Hamiltonian
for the low-degree cases.

Note that the third term ofĤ(σσ ′)
int is rewritten by using boson fieldsφ(σ)+ (ξ) and

Dξφ
(σ)

60 (ξ) ≡ ∑
n>0 a

(σ)
−n ξn + a

(σ)

0 as follows:∮
|η|>|ξ |

dη dξ

(η − ξ)2
: Dξφ

(σ)

60 (ξ)e
φ
(σ)
+ (ξ)−φ(σ ′)

+ (ξ)Dηφ
(σ ′)
60 (η) e−φ(σ)+ (η)+φ(σ ′)

+ (η) : . (13)

Here :∗ : is the usual normal ordering.

3. One-particle (hole) states and vertex operators

In this section, we will show that the wavefunction of the one-particle (hole) excited states
can be expressed as the vertex operator of the free bosons. Before proceeding to the
explanation, it may be better to illustrate the characterization of each eigenstate. As is
well known, the eigenstates of theCSM without spin degrees of freedom can be indexed
by the Young diagrams. Each row (column) in the diagram corresponds to the particle
(hole) excitations of theCSM (see, for example, [5]). For each diagram, there is only one
eigenstate, and the eigenvalue is determined from the diagram.

Even if we introduce the spin degrees of freedom, most of the structure remains the
same. The eigenstates are again indexed by the Young diagrams. The eigenvalue is also
determined by the diagram and it is actually the same as the spinless case. The difference,
however, is that the eigenstate is not unique for each diagram, i.e. the spectrum is degenerate.
This is caused by the existence of the Yangian symmetry [13, 14].

There is a simple method to count the degeneracy of states for each Young diagram.
With s colours we paint each box of the diagram according to the following rule: the boxes in
the same row have the same colour and there is no constraint for the colours in each column.
The coloured Young diagram after this prescription is indexed as(λ1σ1, λ2σ2, . . . , λNσN)

whereλi ∈ Z with λ1 > λ2 > · · · > λN > 0 andσi ∈ {1, . . . , s}. We identify the diagrams
which can be obtained from one another by permuting the colours for each row with the
same length.

This prescription is an obvious consequence of the fact that the number of boxes for
each row can be identified with the momentum of a quasi-particle. Since it has a colour,
we need to paint each row by the same colour. On the other hand, the number of boxes of
each column is identified with the momentum of a quasi-hole. The colours which appear
in each column can be identified with the colours of a quasi-particle which occupies the
upper levels. Let us illustrate it in figure 1. For simplicity we pickα = 1 and consider the
state depicted in figure 1(a). There are three particles written asa, b and c with spin 1,
2 and 1, respectively, and four holesx, y, z andw. This state can be rewritten as the
Young diagram in figure 1(b). We see that particles are mapped to the rows and holes to
the columns, respectively.

We are now in a position to describe the vertex operator construction of the eigenstates.
In the spinless situation [20], we observed that only two types of vertex operators,
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spin 1

spin 2

a b c

a
b
c

x y z w

x z wy

(a)

(b)

Figure 1. An example of the coloured Young diagram.

exp(γ φ−(ξ)) with γ = 1/α,−1, have ‘simple’ forms after they are operated by the
Hamiltonian. If we expand eφ−(ξ)/α (respectively e−φ−(ξ)) with respect toξ , the coefficient
of ξn is identified with the eigenstate for the Young diagram(n) (respectively(1n)). Even
for the system with spin degrees of freedom, we expect similar vertex operators to give the
eigenstates indexed by diagrams with a single row or a single column.

Let us introduce basic vertex operators,

0(ξ ; γ ) = 〈V| eγφ−(ξ (1)) · · · eγφ−(ξ (s))|N〉 = exp

[
γ

s∑
σ=1

∞∑
n=1

1

n
p(σ)n (ξ (σ))n

]
. (14)

Then the vertex operators3(ξ) and�(ξ) corresponding to single column and single row,
respectively, are defined by

3(ξ) = 0(ξ (1), ξ (2), . . . , ξ (s); −1) =
s∏

σ=1

N(σ)∏
j=1

(1 − x
(σ)
j ξ (σ )) (15)

�(ξ) = Dµ0(µ, ξ, . . . , ξ︸ ︷︷ ︸
s−1

; 1/α)|µ=ξ = 1

α

∞∑
n=1

p(1)n ξ
n

s∏
σ=1

N(σ)∏
j=1

(1 − x
(σ)
j ξ)−1/α (16)

whereDµ = µ∂/∂µ. Note that, in contrast to the spinlessCSM, the derivative in (16) is
essential for the case of a single row. It is easily shown that

H(x)3 = Ĥ(ξ)3 Ĥ = −
(∑

σ

Dξ(σ)

)2
+ (N + α)

∑
σ

Dξ(σ) (17)

and

H(x)� = Ĥ(ξ)� Ĥ = αD2
ξ + (N − 1)Dξ . (18)

The derivation of (17) and (18) is straightforward. These formulae indicate that one-particle
and one-hole excitations of the spinCSM are reduced to one-body problems in the ‘dual’
system. Later, we will prove the general version of formula (17).

As mentioned above, the states3(ξ) and �(ξ) are generating functionals of the
eigenstates associated with the coloured Young diagram with single column(1n) and single
row (n), respectively. Namely, by expanding these states in terms ofξ (σ) (or ξ ),

3(ξ) =
s∑

σ=1

∞∑
nσ=0

J (−1)
n1···ns (x)(ξ

(1))n1 · · · (ξ (s))ns (19)

�(ξ) =
∞∑
n=0

J (1/α)n (x)ξn (20)
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we obtain eigenstatesJ (−1)
n1···ns (x) and J (1/α)n (x). Here J (−1)

n1···ns (x) and J (1/α)n (x) denote the
eigenstates corresponding to the single-column Young diagram which hasnσ boxes with
colour σ and the single-row Young diagram with colour 1, respectively.

4. Derivation of a dual Hamiltonian

In this section, we calculate the action of the Hamiltonian on product of the vertex operators
considered in the previous section. We define the vertex operator3(x|ξ),

3(x|ξ) =
s∏

σ=1

N(σ)∏
i=1

M(σ)∏
k=1

(1 − x
(σ)
i ξ

(σ )
k ) (21)

whereM(σ) denotes the number of particles with spinσ in the dual system. In what follows,
we only consider the case such that|M(σ) −M(σ ′)| 6 1 for all σ, σ ′. As in the previous
section, the dual Hamiltonian̂H(ξ) is defined by

H(x)3(x|ξ) = Ĥ(ξ)3(x|ξ) . (22)

We decompose the Hamiltonian̂H as in (9). Then the dual Hamiltonian̂H = ∑
σ Ĥ(σ )(ξ)+∑

σ<σ ′ Ĥ(σσ ′)
int (ξ) is given by

Ĥ(σ )(ξ) = −
M(σ)∑
k=1

(D
ξ
(σ)
k
)2 − α

∑
k<l

ξ
(σ )
k + ξ

(σ)
l

ξ
(σ )
k − ξ

(σ)
l

(D
ξ
(σ)
k

−D
ξ
(σ)
l
) (23)

Ĥ(σσ ′)
int (ξ) = −2

M(σ)∑
k=1

M(σ ′)∑
`=1

∏M(σ ′)
s(6=`)(1 − ξ (σ

′)
s /ξ

(σ)
k )

∏M(σ)

s( 6=k)(1 − ξ (σ)s /ξ
(σ ′)
` )∏M(σ)

s(6=k)(1 − ξ
(σ)
s /ξ

(σ)
k )

∏M(σ ′)
s( 6=`)(1 − ξ

(σ ′)
s /ξ

(σ ′)
` )

D
ξ
(σ)
k
D
ξ
(σ ′)
`

. (24)

Here we omitted the terms which are proportional to
∑

k Dξ
(σ)
k

. Unlike the spinlessCSM, the
dual Hamiltonian is not similar to the original one. This reflects the fact that the symmetry
α ↔ 1/α is broken.

Notice that, although this dual system is not described by the ordinary two-body
interaction, its integrability is clear from our construction. Moreover, we easily see that it
has the same spectrum as that of the original system. In fact, if we expand3,

3(x|ξ) =
∑
λ

Jλ(x)Ĵλ(ξ) (25)

where Jλ(x) is the eigenstate of the original Hamiltonian with the coloured diagram
λ = {λ1σ1, λ2σ2, . . .}, then, because of (21),̂Jλ(ξ) should be the eigenstate of the dual
Hamiltonian with the same eigenvalue.

The derivation of the dual Hamiltonian is rather lengthy. Then, for simplicity, we
consider the case with two components which we denote by{↑,↓}. Let xi and yi be the
coordinates for the particles with up and down spin, respectively, andξk andηk be that of
the dual system. The derivation of (23) is straightforward. To derive (24), first we observe
that

H(↑,↓)
int (x, y)3(x, y|ξ, η) =

∑
i,j

R(xi, yj )Q(xi, yj )3(x, y|ξ, η) (26)

with

Q(x, y) =
∏
k

1

1 − xξk

∏
`

1

1 − yη`
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R(x, y) = x + y

x − y

∏
k

(1 − xξk)
∏
`

(1 − yη`)
(∑

k

−xξk
1 − xξk

−
∑
`

−yη`
1 − yη`

)
−2

xy

(x − y)2

(∏
k

(1 − xξk)
∏
`

(1 − yη`)−
∏
k

(1 − yξk)
∏
`

(1 − xη`)
)
.

Next we show that the right-hand side of expression (26) can be rewritten as the derivative
with respect toξ andη by combining following lemmas.

(i) We can rewriteQ(x, y) as

Q(x, y) =
(M(↑)∑
k=1

Ak(ξ)
1

1 − xξk

)(M(↓)∑
`=1

A`(η)
1

1 − yη`

)
(27)

whereAk(ξ) = ∏
`(6=k)

ξk
ξk−ξ` .

(ii) R(x, y) is a polynomial of degreeM(↑) in x and that of degreeM(↓) in y. Namely,
if we write ∏

k

(1 − xξk) =
M(↑)∑
n=0

sn(ξ)x
n

∏
`

(1 − yη`) =
M(↓)∑
m=0

sm(η)y
m (28)

thenR(x, y) is expressed as

R(x, y) =
M(↑)∑
n=0

M(↓)∑
m=0

sn(ξ)sm(η)Tn,m(x, y) (29)

where

Tn,m(x, y) =



0 n = m

(n−m)xnym + 2
n−m−1∑
r=1

(n−m− r)xn−rym+r n > m

(m− n)xnym + 2
m−n−1∑
r=1

(m− n− r)xn+rym−r n < m .

(30)

(iii) For 0 6 n 6 M(↑)

M(↑)∑
k=1

Ak(ξ)

N(↑)∑
i=1

xni

1 − xiξk
3 =

(
δn,0N

(↓) −
M(↑)∑
k=1

Ak(ξ)ξ
−n
k Dξk

)
3 (31)

and a similar formula fory andη holds. For the derivation of this formula, we used the
Euler identity.

By the first observation, the combination on the right-hand side of (26) can be expressed
as a derivative with respect toξ andη by using∂ξk3 = ∑

i
−xi

1−xiξk 3 etc. The non-triviality
comes from thex, y dependence. However, from the second observation, the dependence
can be reduced to their polynomial and then from the third lemma they can be replaced
by the functions ofξ and η. Therefore, we finally obtain the interacting part of the dual
HamiltonianĤ(↑↓)

int (ξ, η).

5. Discussions and comments

Although we know that the dual Hamiltonian we derived is integrable, many of its properties
are still missing. One important issue is the existence of the Hermitian measure. If it exists,
we can construct every eigenstate of the spinCSM as we describe in what follows.
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Generalizing the spinless case [20, 21], we define two transformations which map one
eigenstate into another. The transformations are:

(i) Galilean transformation: GP .
This transformation is defined by

(GPJ )(x) =
( s∏
σ=1

N(σ)∏
i=1

x
(σ)
i

)P
J (x) . (32)

Since the spinCSM has Galilean invariance, it obviously maps one eigenstate to another.
At the same time, the momentum of each particle is shifted byP . On the Young diagram,
GP has the effect of attaching a rectangle Young diagram(PN) which hasN(σ) rows with
colour σ ’s. This operation does not violate the rule of painting and is always possible.

(ii) Integral transformation which changes the number of variables: N (x, y).
Let us denote the Hermitian inner product of the original system as〈 , 〉x and the inner

product for the dual system as〈〈 , 〉〉ξ . We define the integral transformation as

(N (x, y)J (x))(y) = 〈〈3(y|ξ), 〈3(x|ξ), J (x)〉x〉〉ξ . (33)

If such an inner product exists, from (21), it is clear that the Hamiltonian commutes with
this operator in the following sense:H(y)N (x, y) = N (x, y)H(x). Performing this
transformation, we can change the number of particles for each colour without touching
the Young diagram.

We can construct any eigenstate of the spin-CSM Hamiltonian by alternate operations of
these transformations to the trivial eigenstate, namely the vacuum.

This construction of eigenstates is a straightforward generalization of the method which
has been used in [20, 21] to obtain the integral representation of the Jack polynomial,
and indicated the remarkable identification between the Jack polynomial and the singular
vectors of the Virasoro andWN algebras. We expect that the spinCSM also possesses such
an algebraic structure.

Finally, we comment on some related topics. The correspondence between the
eigenstates of the spinCSM and the solutions of the Knizhnik–Zamolodchikov equation
has been established [25, 26]. More recently, Felder and Varchenko [27] (see also [28])
gave some formulae for the eigenstates of the spinCSM. The Dunkl operators [29] or more
precisely the representation theory of the degenerate affine Hecke algebra [30] have played a
central role in the analysis of the spectrum and integrability of the spinCSM (see also [31]).
It would be interesting to clarify the relation between these works and our results. Also, it
is natural to consider theq-analogue of our methods. Theq-analogue of the spinCSM has
been constructed [32, 33]. We hope to turn to these issues in the near future.
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Appendix. Examples of eigenstates

Here we give some explicit examples of the eigenstates of the spin-CSM Hamiltonian. In
the two-components case, the eigenstatesJλ are written by two kinds of power sumsp(1)n
and p(2)n . We distinguish between two colours of the Young diagram by using bars, for
example,Jλ1,λ̄2,λ̄3,λ4,...

. The eigenstatesJλ with the Young diagramsλ up to three boxes are
as follows:

[
J1

J1̄

]
=

[
p
(1)
1

p
(2)
1

] 
J2

J2̄
J11

J11̄
J1̄1̄

 =


α 0 1 1 0
0 α 0 1 1

−1 0 1 0 0
0 0 0 1 0
0 −1 0 0 1




p
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2

p
(2)
2

p
(1)
1 p
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1

p
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1 p
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p
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1 p

(2)
1




J3

J3̄
J21

J21̄
J2̄1
J2̄1̄
J111

J111̄
J11̄1̄
J1̄1̄1̄


=



2α2 0 3α 2α α 0 1 2 1 0
0 2α2 0 α 2α 3α 0 1 2 1

−α 0 α − 1 −1 0 0 1 1 0 0
0 0 0 α − 1 1 0 0 1 1 0
0 0 0 1 α − 1 0 0 1 1 0
0 −α 0 0 −1 α − 1 0 0 1 1
2 0 −3 0 0 0 1 0 0 0
0 0 0 −1 0 0 0 1 0 0
0 0 0 0 −1 0 0 0 1 0
0 2 0 0 0 −3 0 0 0 1





p
(1)
3

p
(2)
3

p
(1)
2 p

(1)
1

p
(1)
2 p

(2)
1

p
(2)
2 p

(1)
1

p
(2)
2 p

(2)
1

p
(1)
1 p

(1)
1 p

(1)
1

p
(1)
1 p

(1)
1 p

(2)
1

p
(1)
1 p

(2)
1 p

(2)
1

p
(2)
1 p

(2)
1 p

(2)
1


.

Next we show some examples of the eigenstates ofN variables in the coordinate
space. The eigenstate and its eigenvalue are parametrized by a non-negative sequence
λ = (λ1, λ2, . . . , λN > 0) and its set{λ1, λ2, . . . , λN }, respectively. This parametrization is
related to that in [10]. We define a monomialmλ ≡ ∏N

i=1 x
λi
i . The first few examples of

the eigenstatesJλ, in the case of
∑N

i=1 λi = N , are as follows:

J1 = m1 J20 = (α + 1)m20 +m11 J11 = m11

J300 = (α + 1)(2α + 1)m300 + (α + 1) (2m210 + 2m201 +m120 +m102)+ 2m111

J210 = (α + 2)m210 +m111 J111 = m111 .

EigenstatesJ02, J030 andJ201 etc have similar forms. Note that if we sum upJλ over λ’s
which have the same set{λ}, we then obtain the Jack polynomial with the corresponding
Young diagram{λ}.
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